Sparse HJ Biplot: A New Methodology via Elastic Net

Abstract

The HJ biplot is a multivariate analysis technique that allows us to represent both individuals and variables in a space of reduced dimensions. To adapt this approach to massive datasets, it is necessary to implement new techniques that are capable of reducing the dimensionality of the data and improving interpretation. Therefore, we propose a modern approach to obtaining the HJ biplot called the elastic net HJ biplot, which applies the elastic net penalty to improve the interpretation of the results. It is a novel algorithm in the sense that it is the first attempt within the biplot family in which regularization methods are used to obtain modified loadings to optimise the results. As a complement to the proposed method, and to give practical support to it, a package has been developed in the R language called SparseBiplots. This package fills a gap that exists in the context of the HJ biplot through penalized techniques since in addition to the elastic net, it also includes the ridge and lasso to obtain the HJ biplot. To complete the study, a practical comparison is made with the standard HJ biplot and the disjoint biplot, and some results common to these methods are analysed.

Publication
Mathematics, 9(11)
Carlos Alfredo Torres Cubilla
Carlos Alfredo Torres Cubilla
Data Scientist

My interests focus on programming, statistics and data science.

Related